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A graph-theory formalism of the organic chemistry is suggested. The molecular system is con­
sidered as a multigraph with loops, the vertices are evaluated by their mapping onto the vocabulary 
of vertex labels (e.g. atomic symbols). A multiedge of multiplicity t corresponds to a I-tuple 
(single, double, triple, etc) bond. The chemical reaction of molecular systems is treated by the 
transformation of graphs. The suggested graph-theory approach allows to formalize many 
notions and concepts that are naturally emerging in the computer simulation of organic chemistry. 

Until now the graph theoryl·2 has been used in organic chemistry mainly in the 
following two fields: 1) The enumeration problem of organic molecules with pre­
scribed structure is solved by making use of the efficient tools of graph theory I. 
2) the theory of HMO is simulated by simple concepts of graphs, many resu lts 
of HMO can be obtained directly from the structural formula of molecules with 
conjugated bonds2. 

The purpose of the present communication is to suggest a mathematical model 
of organic chemistry following the concepts and notions of the graph theory3.4. 
The obtained model allows to formulate exactly many problems emerging during 
the algorithmic stage of studies of the computer simulation or ogranic chemistry5 - 6. 

Many ideas and concepts of Ugi and Dugundji algebraic model of constitutional 
chemistry 8,9 are implanted in the present formalism; in particular, their R matrices 
are treated now as the so-called 9\ transformation of graphs. We believe that the 
present approach offers very effective formal "machinery" unifying many concepts 
of organic chemistry of rather diverse nature on the basis of simple graph-theory 
considerations. In order to keep the theory simplest as possible we postulate that the 
molecules contain even number of electrons and all bonds are realized by two electrons 
(in some extent this is identical with the restricted chemistry of Ugi and Dugundji8

•
9
). 

In physics the graphs are used very extensively, in particular, for the visualization 
of perturbation terms in quantum electrodynamics10 and many-body theories 11

,12. 

Here, the graphs (or diagrams, following the physical terminology) are used as the 
efficient tool not only for the above mentioned visualization of perturbation terms 

Part I in the series Mathematical Model of Organic Chemistry. 

Collection Czechoslovak Chern. Commun. [Vol. 48] [1983] 



2098 Kvasnicka: 

with complicated algebraic structure, but also as classification scheme. The per­
turbation terms are classified by topological notions (connected - disconnected, 
linked - unlined, ladder diagrams, etc.), this introduces the powerful heuristic 
essentially simplifying many considerations in forming new theoretical approaches. 
Recen tly, Rosensteel and coworkers l3 and Kvasnicka 14 have formulated graph­
-theory approach for the unambiguous representation of the so-called Feynman-
- Goldstone diagrams. The present stage of graph theory in physics and chemistry 
is given in review article of Slanina 15 . 

In the forthcoming sections we shall use the physically oriented graph-theory 
terminology summarized by Essam and Fischer4. 

Thi s terminology is partially modified to be more appropriate for our purposes. 
The molecular graph is defined as a multigraph with loops the vertices of which are 
evaluated by atomic symbols, all the concepts of graph theory (e.g . automorphism, 
isomorphism, etc.) should be now determined in such a way that the evaluation 
of vertices is properly taken into account. 

Basic Concepts 

A vertex sf V = {V I ' V2 , ... , vN } is a set composed of N vertices VI' V2' ••. , vN . 

A vocabulary m = {ai' a2 " .•. , ap}is a se t composed of p vertex labels al,a2'-"" ap ' 

The vertex set V is surjectively17 mapped onto the vocabulary m, 

(1) 

It means that each vertex is uniquely evaluated by a vertex label from the voca­
bulary m. 

An edge is an unordered pair of distinct vertices from the vertex set V. The edge 
[i, jJ is incident with the vertices Vi and Vj and connects them. Two distinct edges 
are adjacent if they have a vertex in common. Two distinct vertices are adjacent 
if they are incident with the same edge. A multiedge of multiplicity t is a set of t 
edges incident with the same pair of distinct vertices, rei, j]I' [i, j]2' .. . , [i, j]t}, and 
are said to be parallel edges. A valence of a vertex is the number of edges incident 
with that vertex. An edge set E = {el , ez, . . . , eM}' where ej = [iI' i 2], associated 
with the vertex set Vis a set of M edges with vertices in V. 

A loop is the pair obtained by taking the same vertex twice from the vertex set V. 
The loop [i, i] is incident with the vertex Vi' A multiloop of multiplicity u is a set 
of II loops incident with the same vertex, rei, i]I' [i, i]2, ... , [i, i]lI}' A loop set 
L = {II ' i2 , ••• , lp} , where lj = [iI' il]' associated with the vertex set V, is a set of P 
loops with vertices in V. 

A molecular graph (or simply graph) is an ordered 5-tuple G = (V, E, L , cp, m), 
where V is a non-empty vertex set, E and L are edge and loop sets both associated 

Collec tion Czechoslovak Chern. Cornrnun. [Vol. 48J [1983J 



Mathematical Model of Organic Chemistry 2099 

with the vertex set Y,and finally, cp is a surjective mapping (evaluation) (1) of the 
vertex set onto the vocabulary m. The concepts introduced are illustrated in Fig. 1. 
We see that an arbitrary molecular system belonging to the restricted chemistry 
may be simply represented by a graph, this representation is of one-one character. 

An automorphism of the graph G is a one-one correspondence W between its 
vertices, 

W:Y->V (2) 

which induces one-one correspondences X and X' between its edges and loops, respecti­
vely, 

X:E->E, (3a) 

X' : L -> L. (3b) 

The correspondence w conserves the evaluation of the vertices, 

W(Vi) = Vj implies <p(v;) = <p(vJ. (4) 

A pair of distinct vertices Vi and Vj satisfying w(vi) = Vj and w(v j ) = Vi are called 
topologically equivalent. If a graph has only a trivial automorphism realized via 

the identity correspondence, then the given graph contains the vertices that are all 
topologically nonequivalent. The concept of automorphism is illustrated in Fig. 2. 

Two vertex sets V = {VI' V2 , ... , VN} and V' = {v~, v~, ... , v~} with mappings (P 
and (p' onto the same vocabulary m of vertex labels, <p : V -> m and <p' : V' -> m, 
are called similar if and only if (iff) there exists a one-one correspondence 1/1 between 

a b 

FIG.l 

The formaldehyde molecule is represented by the graph G = (V, E, L, rp, jS), where the vertex set 
V = {VI' v2' v3, V4}' the edge set E = {el = [1,3], e2 = [2,3), e3 = [3,4], e4 = [3,41}, and 
finally, the loop set L = {It = [4,4), 12 = [4,4)}. The mapping rp evaluates the vertices by the 
atomic symbols, rp(v t ) = H, rp(v2) = H, rp(v3) = C, and rp(v4) = 0, the vocabulary jS = 
= {H, C, o} 
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2100 Kvasnicka: 

them, ,/I : V -+ V', which conserves the evaluation of vertices, i .e. I/J( Vi) = vj implies 
(p(v;) = <p'(vj). 

Two graphs G = (V, E, L, (P, m) and G' = (V', E', L, (p', m) are isomorphic iff 
the vertex sets V and V' are similar, and the one-one correspondence ,/I induces 
a one-one correspondence between their edge and loop sets, respectively, see Fig. 3. 

Two graphs G = (V, E, L, <p, m) and G' = (V', £1, L, <p', m) are isohypsic iff 
the vertex sets Vand V' are similar, and furthermore, these graphs satisfy 

M + P = M' + P', (5) 

t hat is, the graphs G and G' have the same sum of numbers of edges and loops . If two 
graphs are isomorphic, then they are automatically isohypsic, but the converse 
is not necessarily true. 

In order to illustrate these two concepts let us consider a pair of molecular systems 
obtained over the same set of atoms. If both the molecules are determined by the 
same structural formulas that are differing only in the indexing of atoms, then the 
corresponding graphs are isomorphic. Hence, with respect to a parent graph com­
posed of N vertices (atoms or atomic cores) we can construct N! graphs that are 
mutually isomorphic. This number is decreased for the parent graph containing 
topologically equivalent atoms. For example, the graph in Fig. 1 contains four 
vertices, in general we get 24 isomorphic graphs. Since the given graph has two 
topologically equivalent atoms (see Fig. 2) the total number of isomorphic graphs 
is 4!/2! = ] 2. The concept of isohypsic graphs will represent in our forthcomj~lg 
considerations the conservation of atomic cores and number of valence electrons. 

w; 

FIG. 2 

A nontrivial automorphism of the graph presented in Fig. 1. We see that the vertices vJ and v2 

are topologically equivalent 
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That is, a pair of molecules constructed over the same set of atoms (atomic cores) 
must be represented by a pair of graphs that are, apriori , isohypsic. 

A graph G' = (V' , E', r;, ip, IE) is a subgraph of the graph G = (V, E, L , ip , IE) 
iff V' s; V, E' s; E, r; s; L. The subgraph G' is a spanning graph of the graph G 

iff V = V'. The property of subgraph is denoted by G' s; G. 

A union of two graphs G' = (V ', E', r;, (P', IE) a nd G" = (V", E", C, (P", IE) 
determined over the disjoint vertex sets (V' n V" = ¢) is defined by 

G = G' u G" = (V = V' u V", E = E' u E", L = r; u J.;' , (P , IE), (6) 

where the mapping ip is 

() { 
cp'(v) for v E V' , 

cp v = 
(P"(v) for v E V" . 

(7) 

The resulting graph G is called disconnected, and its components are G' and G". 
The difference is determined as G - G' = G". The graphs G' and G" are subgraphs 
of G. 

The adjacency matrix of a graph G is a square symmetric matrix A, the rows a nd 
columns of which are labeled by the vertices of the graph, the elements being deter­
mined by 

a ji = the number ofloops incident with the vertex Vi , (8a) 

a ij = the number of edges incident with both the vertices Vi and Vj • (8b) 

In section 3 the graph G was determined as an ordered 5-tuple, i.e. G = (v, E, L, 

cp, IE). Now, using the concept of adjacency matrix A, we may give the second alter­
native determination of G as 

G = (v, A, (P, IE) , 

FiG. 3 

The graphs G and G' are isomorphic, the 
mappings rp and rp' and the vocabulary )S 

are determined in Fig. 1 
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2102 Kvasnicka: 

which is fully equivalent with the previous determination of G. In our forthcoming 
considerations we shall use both these definitions in a dependence on their particular 
advantages. 

The adjacency matrix A of the graph in Fig. 1 looks like this 

A = V2 0 0 1 0 . VI (0 0 1 0) 
V3 1 1 0 2 
V4 0 0 2 2 

(10) 

Let us have two isomorphic graphs G = (V,E,L ,cp , 5!l) and G' = (V', E', .r:, cp', 5!l), 
their adjacency matrices are A and A', respectively. The one-one correspondence l/I 
between vertex sets Vand V' is simply realized by a permutation 

p = (1, 2, .. . , N ) 
PI ' P2' ... , PN ' 

(11) 

the vertices of Vand V' are realted by v; = v
PI 

and cp'( v;) = cp( vp .). Then the adjacency 
matrix A' is determined as follows 

A' = pTAP , (12) 

where P is an orthogonal (PT = P-l) matrix corresponding to the permutation'(I1j. 
The so-called matrix distance between two symmetric matrices X and Y is deter­

mined by 

(13) 

where x j a nd Y j are the entries of X and Y, respectively. 

Let us have two isohypsic graphs G = (v, A, cp, 5!l) and G' = (V', A', cp', 5!l), 
and let G' be an isomorphic graph of G'. The adjacency matric of G' is - A' = pT A'P, 
see Eq. (12). A distance between a pair of isohypsic graphs G and G' is the shortest 
matrix distance between adjacency matrices of G and an isomorphic graph G' of G', 

d(G, G') = min I(A, PTA). (14) 
p 

The distance induces a metrics , the following three fundamental properties are satis­
fied: 

1) The symmetry 

d(G, G') = d(G', G), (15a) 
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2) the triangular inequality 

d(G, G') ~ d(G, Gil) + d(G", G'), (I5b) 

3) the positive semi-definitess 

neG, G') ~ 0 (= 0 iff G and G' are isomorphic). (15c) 

One can say, a set of isohypsic graphs forms a metric space. 

The notion of distance serves as a "measure" to quantify the similarity and /or 
dissimilarity of two isohypsic graphs (which are representing the molecular systems 
obtained over the same set of atoms). For a pair of isomorphic graphs , see Eq. (! 5c), 
we get the zero distance, this property corresponds to a situation when we have 
compared two molecules that are differing only in the indexing of atoms. Ugi and 
Dugundji s.9 have introduced the notion of the so-called chemical distance between 
two ensembles of molecules by making use of the matrix distance (! 3). It seems that 
SLlch a straighforward determination of the distance does 110t offer very suitable 
framework for the construction of a mathematical model of organic chemistry. 
Obviously, their determination of the distance depends on an actual indexing of verti­
ces, this enters many additional formal difficulties that must be solved separately. 

Reaction Operator 

Consider two isohypsic graphs G = (V, E, L, <p, lB) = (V, A, <p, lB) and G' = 

= (V, E' , r;, (P, lB) = (V, A', (P, lB), both constructed over the same vertex set V. 
Formally, we can say that the graph G is transformed onto the graph G' by a reaction 
operator, 

RG = G', (/6a) 

or conversely, the graph G' is transformed onto the graph G by a retro-reaction 
operator - R, 

-RG' = G. (16b) 

The reaction operator acts only on the edge and loops sets, 

RE = E' and RL = r; . (17) 

It rebuilds the initial sets of edges and loops onto the new sets E' and r; in such a way 
that the condition (5) is satisfied (i.e. the sum of numbers of edges and loops for both 
G and G' is conserved during the application of R, this directly follows from our 
requirement that G and G' are isohypsic). 
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2104 Kvasnicka: 

Following Ugi and Dugundji8
, 9 , the reaction operator R is represented by an 

(N, N) symmetric reaction matrix R, 

or 

RG = R(V, A, (P, ~n) = def (V, R + A, (P , ~) 

= G' = (V, A' , (p,~) , 

R + A = A', 

(/8) 

(/9) 

Thi s relation gives, in fact, the reaction matrix R in the following explicit form 

R = A' - A , 

The entries of R are simply interpreted as 

I'jj = the number of loops created (rii > 0) 

[annihilated (rjj < O)J incident with 
the vertex Vj , 

I'jj = the number of edges crea ted (I'jj = > 0) 

[annihilat ed (I'jj < O)J incident with 
both the vertices Vj and V j , 

(20) 

(21a) 

(21 b) 

Since the graphs G and G' are isohypsic, the total numbers of created and annihilated 
edges/loops are exactly balanced, see Eq. (5), the entries of R must satisfy 

(22) 

The retro-reaction matrix - R corresponding to the retroreaction operator - R, 
see Eq, (I6b), is simply determined by 

(23) 

Let G = (P, - A, cp , ~), G' = (P, -A', cp, m) be a pair of graphs which are iso­
morphic of the original pair G, G' , and let the one-one correspondence lj; between 
vertex sets Vand P be realized by a permutation (9). Then , following the relation (/2), 
the adjacency matrices - A, -A' are related with their original counterparts by 

(24) 
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Mathematical Model of Organic Chemistry 2105 

The graph C' may be formally considered as a transformation of C performed by a re­
action operator - R, 

C' = - RC. (25) 

The reaction matrix - R = - A' - -A, see Eq. (20), corresponding to the reaction 
operator - R, is simply determined as follows 

( 26) 

It is easy to prove that the distance between two isohypsic graphs G and G' , related 
by (16b) , is equal to the sum of the absolute values of upper-triangle entries of R 

d(C, G') = I hil· (27) 
i ~ j 

Consider a pair of isohypsic graphs G = (V, E, L, <p, IH) = (V, A, (P , 'B) and G' = 

= (V', E' , ~, <p , 'B) = (V', A' , <p, 'B) . In general , the vertex sets Vand V' are similar, 
this directly follows from the assumption that G and G' are isohypsic. The di stance 
between C and C' is determined by (14) 

d(G, G' ) = min/(- A, - PT-A' -P) = ICA, - pJ;, - A'-Po)' (28) 
p 

where Po is the matrix representation of a permutation (11) for which the above 
extremal propelty is achieved. The adjacency matrix -A' = P,[;A'Po determines 

a graph C' which is isomorphic of G'. We introduce a class of all possible graphs 
{C' , Gil, . .. } that are isomorphic of C', of course, it contains automatically the graph 
C', its adjacency matrix -A' has shortest matrix distance from the adjacency matric A 
of G. 

Now, after these preliminary considerations we are ready to define the reaction 
operator R which transformes the graph G onto the class {G' , Gil, . .. } of graphs 
that are isomorphic of G' . As a representative of this class we choose the graph C' 
with shortest matrix distance from G. Hence, treating a transformation of G onto C' 

we put 

RG = C' E {G~, C;, ... } . (29) 

The reaction matrix corresponding to this process is determined by [cf. Eqs (20) 
and (28)J 

(30) 

In order to reduce the result (30) onto (20) we have to assume that the graphs G 

Collection Czechoslovak Chern. Commun. [Vol. 48J [1983J 



2106 Kvasnicka: 

and G' are determined over the vertex set V (i.e. V = V'), then the permutation Po 
is equal to the identity permutation (the assigned matrix Po is unity). 

Bond, Synthon and Protosynthon 

A bond G(i, j) of a graph G = (V, E, L, <p, m) is a connected subgraph determined 

for a pair of adjacent vertices Vi' Vj E V, 

(3 I) 

where 

V;j = {Vi' vJ ~ V, (32a) 

Eij = a multiedge which is incident with both the vertices Vi and (32b) 

Lij = a union of multiloops that are incident with the vertex Vi and (32c) 

vj ' respectively, (Lij ~ L) . 

The bond G(i , j) is t-tuple (single, double, triple , etc.) if the edge set Eii is a multi­
edge of multiplicity I. 

A synthon G( Q) of the graph G is a subgraph determined for an index set Q, 

(33) 

where 

VQ={vi;iEQ}~V, (34a) 

EQ = n (the multi edge incident with both the vertices Vi and vJ, (34b) 
i*ieQ 

LQ = U (the multiloop incident with the vertex Vi) • (34c) 
ieQ 

If Q = {i, j} and the vertices Vi and Vj are incident, then the synthon G( Q) is identical 

with the bond G(i, j). The synthon may be further classified as connected/disconnect­

ed , this fuJly depends on the selection of Q. 

Let G(Q) = (VQ' EQ, LQ, (P, m) be a synthon of a graph G = (V, E, L, <p, m). 
A synthon complement G(Q) = (VQ, EQ, LQ, <p, m) is determined as a subgraph 

of G, its union with the synthon G(Q) produces the original graph G, 

G = G(Q) u G(Q) , (35) 
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(36a) 

(36b) 

(36c) 

Hence, for a pair of a graph G and its synthon G(Q) ~ G we may construct a synthon 
complement G(Q) in such a way that the union of G(Q) and G(Q) gives the original 
graph G (Eq. (35)], and furthermore the synthon and its complement are edge and 
loop disjoint [Eqs (36b) and (36c)], whereas, in general, they can share a common 
vertex [Eq. (36a)]. For illustration of these concepts see Fig. 4. 

Assuming that a reaction operator R acting on the graph G affects only the synthon 
G( Q), the relation (16a) may be rewritten as follows 

RG = R[G(Q) U G(Q)] 

= [RG(Q)] U G(Q) 

= G'(Q) U G(Q) 

= G', 

(37) 

that is, the synthon complement G(Q) is intouched by the reaction operator R, whole 
transformation is running only on the synthon G( Q). 

Let us have a class of graphs <» = {G 1, G2 , ... } and let G( Q) be a common synthon 
of these graphs. This implies that an arbitrary Gi E <» is equal to a union of the synthon 
G(Q) and a synthon complement Gi(Q) [determined with respect to both G j and G(Q) 
see above] 

(38) 

G G(Q) G(Q) 

FIG. 4 

Illustration of the concept of synthon G(Q) and it~ synthon complement (G)Q 
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2108 Kvasnicka: 

Then a n action of the reaction operator R affecting only their common synthon 
G( Q) is determined by [Eq. (37)] 

RGi = G'(Q) u Gi(Q). (39) 

Summarizing, the approach of synthons allows to essentially simplify the formal 
treating of the action of reaction operator R on an arbitrary graph from the class ili. 
In particular, the action of R on the graphs from the class ili is fully determined 

by RG( Q) = G'( Q), see Fig. 5. 

Consider a disconnected graph G = (V, £, L, (P, I.D) composed of two components 

GI = (VI ' £1' L1, (P, I.D) and G2 = (V2 ' £ 2, L2, cp, I.D), Let GI(QI) and G2(Q2) be 
synthons of G1 a nd G2 , respectively, their union may be formally considered as 

a sy nthon of G = G I U G2 , 

(40) 

where Q = QI U Q2. Conversely, the synthon G(Q) of the disconnected graph G 
is said to be disconnected as well, and it is composed of components GI(QI) and 
G2 ( Q2) that are again sy nthons of G1 and G2 , respectively. 

We introduce two classes of graphs ili 1 = {G~l), G\2 ), .. . } and ili2 = {G~I), G~2), ... } 
Assuming that the graphs G\i) and G\j) are determined over the different vertex sets , 
then their union Gij = G\i l U G\j) is simply a disconnected graph composed of two 

components G~i ) and G\jl. Let GI( Q I) and G2 ( Ql) be the common synthons of ~::aphs 

~(Q) 

FIG. 5 

An arbitrary graph G i E @j can be written 
as the union of the synthon and the synthon 
complement. The reaction operator R acting 
on the graph G i affects only the synthon 
G(Q), and transforms this synthofl onto 
a modified synthon G'(Q) 
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from (\)1 and (\)z, respectively. The union G(Q) = G1(Q1) u GiQ2) (for Q = Ql U 
U Q2) may be considered as a synthon of an arbitrary disconnected graph Gij = 

= G\i) U G~). All the possible unions G ij form a new class of graphs (\) = {Gij}, for­
mally (\) = (\)1 U (\)2' 

The graphs of (\), (\)1 ' and (\)2 have the same synthon G(Q), G1(Ql), and G2(Q2)' 
respectively, where G(Q) = G1(Ql) u G2(Q2)' for illustration see Fig. 6. 

Let us assume that a reaction operator R acting on the graphs from (\) affects 
only the common synthon G( Q). Then the present formalism allows to treat simul­
taneously the class of disconnected graphs that have the synthon G(Q) in common. 
Ghis is the main reason why the concept of synthons was introduced, it essentially 
simplifies the application of a reaction operator on the disconnected (and not only 
these) graphs. 

Now we turn our attention to the adjacency-matrix representation of a synthon 
G( Q) S; G. Following the relation (35) the graph G is equal to a union of the synthon 
G(Q) and its synthon complement G(Q), G = G(Q) u G(Q). In the "adjacency­
-matrix" representation, see Eq. (9), we have 

G(Q) = (VQ' A(Q), qJ, m), (41a) 

G(Q) = (VQ' - A(Q), (P, m), (41b) 

G = (V, A, qJ, m) . (41c) 

The rows and columns of the adjacancy matrix are labeled by the vertices of a given 
graph, this directly implies that the total adjacancy matrix A may be expressed as 
a direct sum of A( Q), - A( Q), 

A = A(Q) EEl -A(Q) , 

FIG. 6 

The graph Gij E ® is composed of two 
components G\i) E ®t and G~) E ®2' each 
of these components contains the synthon 
Gj(Qj) and G2(Q2), respectively. The total 
synthon of Gij is G(Q) = G1(w j ) u G2 (Q2)' 
The reaction operator R affects only the 
synthon G(Q), hence the rectangula r shaded 
blocks are irrelevant for this transformation 
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2110 Kvasnicka: 

which is a matrix counterpart of the set-theory relation (35). If a reaction operator R 
affects only the synthon G(Q) [see Eq. (37)J, then its reaction matrix may be formally 
considered as a "proto-matrix" reffered to the adjacencyc matrix A( Q), we get 

R + A = R + [A( Q) Ei.7 - A( Q)] 

= [R + A(Q)J EB - A(Q) 

= A'(Q) Ei.7 _A(Q) = A' . 

(43) 

Finally, consider two reaction operators Rl and R2 both affecting only a synthon 
G(Q). Then the adjacency matrix A'(Q) ofa transformed synthon G'(Q) = R1 R2 G(Q) 
is given by 

(44) 

it means that, formally, the reaction operators Rl and R2 are commuting, 

(45) 

An elementar reaction operator Rij transforms a graph G = (V, E, L , cp , ~) 
with adjacent vertices Vi and Vj onto a graph G' = (V, E', L, cp , ~) = RiP, where 

E' = E - {[i, jJ} , 

L = L u {U, j]} . 

(46a) 

(46b) 

It means that the edge [i , jJ is annihilated in E to form E', and simultaneously, 
the loop [j, j] is created in L to form L. For completeness, if G does not contain 
the edge [i, j] , then the action of Rij is not permitted. 

In a reverse way we define an elementar retr-reaction operator - Rij , it transforms 
a graph G = (v, E, L , cp, ~), containing a loop incident with a vertex Vj' onto a graph 
G' = (V, E', L, cp , ~), where 

E' = E u rEi, jJ} , 

L = L -- {[j, jJ} . 

(47a) 

(47b) 

Hence, the edge [i, jJ is created in E to form E', and and simultaneously, the loop 
[j, jJ is annihilated in L to form L. If the graph G does not contain the loop [j, j] , 
then the action of - Rij on the graph is not permitted. For illustration see Fig. 7. 

Following the terminology of Kratochvn16
-

19
, the elementar reaction operator 

Rij(RiJ corresponds to the so-called nuc1eofug (electrofug) dissociation process 
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(i.e. Ai - Aj ..... Ai + Aj and Ai - Aj ..... Ai + Aj). The elementar retro-reaction 
operator - R j(- Rj ) corresponds to an inverse process called the nucleophilic (electro­

philic) association (i.e. Ai + A j ..... Ai - Aj and Ai + Aj -> Ai - AJ 
The matrix representation of these reaction operators is 

(48a) 

(48b) 

The elementar reaction operator R ij (or - Rij) relates a pair of isomeric graphs C 
and C' with shortest possible distance 

d(C, C') = 2, (49) 

the total number of edges and loops is determined by 

M = M' + 1 and P = P' - 1 (reaction), (50a) 

M = M' - 1 and P = P' + 1 (retro-reaction). (50b) 

In general, an arbitrary reaction operator R may be expressed as a product [un­
ordered, see Eq. (45)] of the proper elementar reaction and/or retro-reaction opera­
tors. For instance, let us study a reaction operator R acting on a graph C = 

= (v, E, L, qJ, m) 

RC = C' = (V, E', L', qJ, m), 

FIG. 7 

Schematical illustration of the elementar ~Vi 
reaction and retroreaction operators Rij :::";: 

and - Rij , respectively. a Structural formula, ~ 
b molecular graph :J 
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where 

E' = (E - {[i, j]}) U {[i, k]} , 

z; = (L - {[k, k]}) u {[J, j]} . 

Kvasnicka: 

(52a) 

(52b) 

The resulting graph G' is isohypsic of G, M = M' and P = P'. There is easy to see 
that the reaction operator R may be expressed via the elementar (retro-) reaction 
operators, 

(53) 

the corresponding reaction matrix is determined by 

R = Vi ( 0 -1) EB Vi (0 1) 
Vj -1 1 V k 1 -1 

Vi ( 0 -1 1) 
= Vj -1 1 O. 

vk 1 0-1 
(54) 

Assume that the graph has a bond (synthon) G(i, j) S; G. Then, following the relation 
(35), the graph is the union of G( i, j) and its bond complement G(i, j), " 

G = G(i, j) U G(i, j) . (55) 

The elementar reaction operator R (i.e . Rij, Rjj , - Rij, - Rji) affects only the bond 
GU, j), we arrive at [Eq. (37)] 

RG = [RGU, j)] u GU, j) = G'(i, j) u G(i, j) , (56) 

where an actual form of the resulting bond G'(i, j) = RG(i, j) is fully determined 
by the relations (46) and (47), respectively. 

A protosynthon Gp is determined as a graph Gp = (Vp, Ep, L p, Cpp, m) and let Rp be 
a protoreactioll operator acting 011 whole Gp (i .e. not only on a subgraph of Gp). 

The pair (Gp , Rp) is formally considered as the prototype of a transformation R 
of an arbitrary graph G = (v, E, L , cp, m) which contains a synthon G(Q) isomorphic 
of the protosynthon Gp' the reaction operator R is unambiguously related to the 
protoreaction operator Rp. 

Let G( Q) = (VQ' EQ, LQ, cp, m) S; G be a synthon of G and G(Q) be isomorphic 
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of the preselected protosynthon Gp • This implies that the vertex sets VQ and V;, 
are similar, there exists such a one-one correspondence tit between VQ and Vp (1/1 : 
: Vp ...... VQ, saving the evaluation of vertices) which induces a one-one correspondence 
between their edge and loop sets. The protosynthon Gp may be alternative presented 
as GiQp), where the index set Qp = {I, 2, ... , n} corresponds to an indexation 
of vertices in Vp = v\p\ v~P), ... , v~P)}. Introducing an index set Q~ = {tIt(1), tIt(2), .. . 
... , tIt(n)} the reaction operator R can be now formally determined as follows 

(57) 

That is, it acts structurally in the same way as the original protoreaction operator Rp, 
but now the vertices of modified (by the reaction) edges and loops are indexed 
according to the modified indexed set Q~. 

The relation (57) can be rewritten in the matrix form, let us assume that the index 
set Q~ differs from the original Qp only in a permutation (11) of indices, i.e.l//(i) = Pi ' 
then the reaction matrix R assigned to the reaction operator R is see Eg. (26) 

(58) 

where Rp is the reaction matrix of the protoreaction operator Rp. The present con­
cepts are illustrated in Fig. 8. 

[~~ 
d 

FIG. 8 

Illustration of the concept of protosynthon Gp and protoreaction operator Rp. (a) The graph 
G contains the synthon G(Q) which is modified by the reaction operator R. (b) The synthon 
G(Q) and the reaction operator R are substituted by the protosynthon synthon Gp and the proto­
reaction operator Rp' the pair (Gp' Rp) represents the so-called protoreaction. The edges are di­
vided by a vertical oval block which represents a new indexation of vertices in Gp • an isomor­
phism of G(Q) and Gp is represented by the 1-1 mapping ",. (c) The action of Rp on Gp 
gives a modified protosynthon G~. (d) Removing the vertical oval block the modified proto­
synthon G~ is changed onto the modified synthon G'(Q) 

Collection Czechoslovak Chern . Comml'n. [Vol. 48] [1983] 



2114 Kvasnicka: 

Mechanistic Approach 

Recently, Kratochvil 16
-

J9 has suggested the f01mal approach how to select for 
a given molecular system the proper chemical transformation s (reactions). We turn 
ollr attention to the application of the present formalism developed in the previous 
sec tion to give the exact graph-theory formulation of Kratochvil 's approach. 

Let LIS study a connected graph G = (V, E, L, cp, 5!3) which will be called the 
substrate graph. Applying sllccessively a group of heuristic rules (formally expressed 
by a ma pping q») on the substrate graph we get a class!B composed of a pairs of a stra­
tegic bond B = G(i, j) ~ G and an elementar reaction operator Rele [equal either 
to Rj j , Rjj , - Rjj , or - Rj;J 

cP: G -~, = {(Bi' R~jl~); i = 1,2, ... , a}. (59) 

Hence, applying the mapping (p the substrate graph G is evaluated by the class !B, 
it contains a pairs of strategic bonds of G and assigned elementar reaction operators. 
In chemistry this concept is related to an initial mechanistic attack of a fixed bond. 

Each pair (B, Rele ) serves as an argument of the next mapping '1', the given pair 
is evaluated by class 6 composed of b pairs (Gp, Rp), where Gp is a protosynthon 
and Rp is a protoreaction operator, 

(60) 

The mappings cP and 1]1 (that are realized by two groups of heuristic rules) ev~luate 
the substrate graph G by pairs (B, Rele) and (Gp, Rp). The first pair determined an inifial 
tial mechanistic attack of the bond B, whereas the second pair (Gp , Rp) corresponds 
(as will be specified below) to a standard transformation of the graph G. 

Usually, the protosynthon Gp is a disconnected graph composed of two disjoint 
components, the first (second) one corresponds to the so-called substrate (reagent) 

subsynthon Gp,SUbS (Gp,reag), 

G p = Gp,subSI U Gp,reag. (61) 

We look for on the graph G a synthon G(Q) ~ G which is isomorphic of Gp,sUbSI' 

For a given standarr transformation [described by both the pairs (B, Rele) and 
(Gp , Rp)] we have available a bank of reagent graphs (which is nothing else than 
a set of connected graphs). The next problem standing before us is to select from the 
given bank a reagent graph G [of course, as was mentioned above, with respect 
to the graph G and both the pairs (B, ReIe) and (Gp, Rp)]; formally, this can be 
realized by a mapping fl, 

(62) 
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In an actual algorithm, the mapping Q is performed by making use of heuristic rules . 
Finally, we look for a on the selected reagent graph G a synthon G(Q) S; (j which 

is isomorphic of Gp ,reag' 

We have started in our considerations from a fixed substrate graph (connected) G, 
applying successively the mappings CP, '1', and Q we have the reagent graph G and 
two synthons G(Q) S; G and G(Q) S; G, where these synthons should be isomorphic 
of Gp,SUbSl and Gp,reag, respectively. The reaction operator R [constructed from the 
given protoreaction operator, see Eq. (57)] acts on the union G u G and it affects 
only the common synthon G(Q) u G(Q), we arrive at 

RG lot = G;ot , (63) 

.------ G 

~ 
(B ,VI.,. ) 

FIG. 9 

The general scheme of the approach described in section 16. The top root of this flowing chart 
is a preselected graph G. (a) Using the mapping cP we get a pair (B, Rele) composed of the 
so-called strategic bond B S; G and an elementar reaction operator R.le- (b) The above pair 
(B, Rde) is evaluated by the mapping tp onto the pair (Gp, Rp) of a protosynthon and a proto­
reaction operator, respectively. This second step represents the assignment of a protoreaction 
to a given preselected graph G. We look for in the bank of reagents the so-called reagent graphs G, 
this is perform;.d with respect to the protoreaction described by the pair (Gp, Rp) . (c) A chosen 
reagent graph G is unified with the original graph G, the result is denoted by G tot ' (d) The graph 
G

/
lot is transformed by a reaction operator uniquely determined by the protoreaction operator 

Rp' the modified graph is is denoted by G;ot. (e) The modified graph G;ot is composed (usually) 
of two components, the first (second) one represents the product (by-product) graph G;ot,prod 

(Gtot.by-prod)' Finally, the graph G;ot,prod is identified with the original input graph G and 
whole scheme is repeated 
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where GIOI = G u G. In the case that the resulting graph G;OI is disconnected and com­
posed of two or more components, a first component is called the product graph 
(G;ol ,prod) while the remaining ones are unified at a graph (connected or disconnected) 
called the by-product graph (G;OI,by_prod), 

G;OI = G;ol,prod u G;ol,by_prOd . (64) 

This process is repeated cyclically (Fig. 9) in such a way that the graph G;ol,prod is 
identified with the substrate graph G at the beginning of the next cycle, schematically, 

(65) 

The starting graph is transformed by a set of successivetransformations R1 , Rz . ... 
... , Rn -1 onto the resulting (final) graph G~:~SI' 

CONCLUSIONS 

The purpose of this communication is to demonstrate that the graph-theory approach 
offers fruitful and suitable machinery how to formulate a mathematical model 
of organic chemistry. The structural formula of an organic molecule is represented 
by a multigraph with loops, its vertices are evaluated by the so-called vertex labels 
corresponding, for example, to atomic symbols. The concept of reaction operators 
allows to treat a transformation of a graph (i.e. a molecular system) onto another 
one, this is very serious aspect to the present theory which covers the chemical 
transformation of molecules. From the standpoint of the formal languagesZO

,21, 

the described method may be formally considered as a grammar generating the pro­
duct graphs from a preselected substrate graph. In theory of formal languages are 
elaborated very powerful techniques for the syntactic analysis (parsing), they can be 
used also in the present graph-theory approach for retrosynthetic simulation of chemi­
cal transformations 2Z. 

The alit hoI' wishes to express his appreciation /01' many useful and stimulating discussions with 
Professor M. Kratochvil and Dr J. Koca. 
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